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                                        Chapter Three 

Steady state Heat Conduction in Plane Walls 

1) Considerable temperature difference between the inner and the outer surfaces of the 

wall (significant temperature gradient in the x direction). 

2) The wall surface is nearly isothermal. 

 

 

 

 

 

Assuming heat transfer is the only energy interaction and there is no heat generation, the 

energy balance can be expressed as 
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Then Fourier’s law of heat conduction for the wall can be expressed as 

 

 

Integrating the above equation and rearranging yields 
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Conduction Resistance 

The above equation for heat conduction through a plane wall can be rearranged as 

 

 

Where  R
wall

 is the conduction resistance  expressed as  

 

 

 Convection Resistance 

Newton’s law of cooling for convection heat transfer rate (                            ) can be 

rearranged as 
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 is the convection resistance 

 

 

 

 Radiation Resistance 
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 Radiation and Convection Resistance 
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Thermal Resistance Network 

 

 

 

 

 

 

 

 

Multilayer Plane Walls 
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Generalized Thermal Resistance Networks 

The  thermal  resistance network, which consists of two parallel resistances, can be 

represented as shown in the figure. Noting that the total heat transfer is the sum of 

the heat transfers through each layer, we have 
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Now consider the combined series-parallel arrangement shown, the total rate of 

heat transfer through this composite system can again be expressed as, 

 

 

 

 

 

 

 
 

 

once the individual thermal resistances are evaluated, the total  resistance  and  the  

total  rate  of  heat  transfer  can easily be determined from the relations above. 

 

 

 

 

 

 

 

 

 

 
 

 

Sphere 

Sphere systems may also be treated as on dimensional when the temperature is a 

function of radius only   
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Heat Conduction in Cylinders 

 

 

 

 

 

Thermal Resistance with Convection 

 

 

 

 

 

 

 

Multilayered Cylinders 
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